Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example: For num = 5 you should return [0,1,1,2,1,2].
Follow up:
It is very easy to come up with a solution with run time **O(n*sizeof(integer)). But can you do it in linear time O(n)** /possibly in a single pass?
Space complexity should be O(n).
Can you do it like a boss? Do it without using any builtin function like **__builtin_popcount** in c++ or in any other language.
classSolution { public: vector<int> countBits(int num){ vector<int> res = vector<int>(num+1,0); int pow2 = 1,before =1; for(int i=1;i<=num;i++){ if (i == pow2){ before = res[i] = 1; pow2 <<= 1; } else{ res[i] = res[before] + 1; before += 1; } } return res; } };
Java
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
publicclassSolution { publicint[] countBits(int num) { int[] res = newint[num+1]; intpow2=1,before =1; for(int i=1;i<=num;i++){ if (i == pow2){ before = res[i] = 1; pow2 <<= 1; } else{ res[i] = res[before] + 1; before += 1; } } return res; } }
Python
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
classSolution(object): defcountBits(self, num): """ :type num: int :rtype: List[int] """ res = [0] * (num + 1) before = pow2 = 1 for i in xrange(1,num + 1): if i == pow2: before = res[i] = 1 pow2 <<= 1 else: res[i] = res[before] + 1 before += 1 return res
classSolution(object): defcountBits(self, num): """ :type num: int :rtype: List[int] """ res = [0] * (num + 1) for i in xrange(1,num + 1): res[i] = res[i >> 1] + (i & 1) return res