leetcode Minimum Height Trees
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format The graph contains
n
nodes which are labeled from0
ton - 1
. You will be given the numbern
and a list of undirectededges
(each edge is a pair of labels).You can assume that no duplicate edges will appear in
edges
. Since all edges are undirected,[0, 1]
is the same as[1, 0]
and thus will not appear together inedges
.Example 1:
Given
n = 4
,edges = [[1, 0], [1, 2], [1, 3]]
1
2
3
4
5 0
1
/ \
2 3return
[1]
Example 2:
Given n = 6
, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
1 | 0 1 2 |
return [3, 4]
Hint:
- How many MHTs can a graph have at most?
Note:
According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
今天新出的题 leetcode Minimum Height Trees
题意:
给定一个n个结点n-1条边的无向图(就是树啦),让你找从哪个点出发,到其他结点的最长距离最小?(返回所有答案)
思路:
一开始类似RIP来更新距离,结果TLE。证明O(n^2)的复杂度太大
只好想其他的方法。
答案一定是最长距离的中间结点位置上。
我们要的是中间结点,沿着树的外围每次把叶子结点砍掉,那么,最后剩下的不就是中间结点了么?
Leetcode其他树的题: leetcode Tree 整理版
Code
Python 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32# leetcode Minimum Height Trees
# https://www.hrwhisper.me/leetcode-minimum-height-trees/
class Solution(object):
def findMinHeightTrees(self, n, edges):
"""
:type n: int
:type edges: List[List[int]]
:rtype: List[int]
"""
if n==1: return [0]
digree = [0 for i in xrange(n)]
g = [[] for i in xrange(n)]
for x,y in edges:
digree[x] += 1
digree[y] += 1
g[x].append(y) #add_edge
g[y].append(x)
leaves = [i for i in xrange(n) if digree[i]==1]
nodes = n
while nodes > 2:
temp = []
for i in leaves:
digree[i] = 0
nodes -= 1
for j in g[i]:
digree[j] -= 1
if digree[j] == 1:
temp.append(j)
leaves = temp
return leaves
附上一开始TLE的版本
思路就是类似于RIP算法,通过相邻的结点更新当前结点距离。
比如说有x ,y 一条边(以x=>y举例,y=>x同样进行更新)
我们可以通过y到各个结点的距离dis[y]来更新,就是说,让x走y这条边,然后到其他结点的距离(比如i)是不是比当前不走y到i的距离小。
于是有:dis[x][i] = dis[i][x] = min(dis[i][x], dis[i][y] + 1) (无向图对称性:dis[i][y] = dis[y][i] , dis[x][i] = dis[i][x])
最后找最小的即可。
总复杂度:O(n^2)
1 | class Solution(object): |