leetcode Count of Range Sum
Given an integer array
nums, return the number of range sums that lie in[lower, upper]inclusive. Range sumS(i, j)is defined as the sum of the elements innumsbetween indicesiandj(i≤j), inclusive.Note: A naive algorithm of O(_n_2) is trivial. You MUST do better than that.
Example: Given nums =
[-2, 5, -1], lower =-2, upper =2, Return3. The three ranges are :[0, 0],[2, 2],[0, 2]and their respective sums are:-2, -1, 2.
题目地址: leetcode Count of Range Sum
题意:
给定一个整数组成的数组,求它的所有子区间和坐落于[lower, upper] 的个数。
比如样例中[-2, 5, -1]中,这三个区间的和在[-2,2]之间 [0, 0], [2, 2], [0, 2]
思路
先来看看最朴素的O(n^2)算法,首先算出和,然后枚举区间范围。
| 1 | public class Solution { | 
题目要求的效率好于O(n^2)的算法,那么要怎么加速呢?
还记得 Count of Smaller Numbers After Self 么?
那时候,我们用Fenwick树或者线段树,先离散化,然后从右向左扫描,每扫描一个数,对小于它的求和。然后更新.....
这题也差不多,需要找满足条件 lower ≤ sum[j] - sum[i - 1] ≤ upper ,也就是lower + sum[i - 1] ≤ sum[j] ≤ upper + sum[i - 1]
我们同样的求出和,然后离散化,接着从右向左扫描,对每个i 查询满足在[ lower + sum[i - 1], upper + sum[i - 1] ]范围内的个数(用线段树或者Fenwick Tree)
这样复杂度就是O(n log n)
线段树
C++
| 1 | typedef long long LL; | 
Binary indexed tree (Fenwick tree)
关于此树的介绍: Binary indexed tree (Fenwick tree)
注意要加入upper 和 lower -1 两个点
(python 版本比C++简洁太多了^ ^,建议看py版本)
C++ 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59typedef long long LL;
class FenwickTree {
	vector<int> sum_array;
	int n;
	inline int lowbit(int x) {
		return x & -x;
	}
public:
	FenwickTree(int n) :n(n), sum_array(n + 1, 0) {}
	void add(int x, int val) {
		while (x <= n) {
			sum_array[x] += val;
			x += lowbit(x);
		}
	}
	int sum(int x) {
		int res = 0;
		while (x > 0) {
			res += sum_array[x];
			x -= lowbit(x);
		}
		return res;
	}
};
class Solution {
public:
	int countRangeSum(vector<int>& nums, int lower, int upper) {
		if (nums.size() == 0) return 0;
		vector<LL> sum_array (nums.size() * 3,0);
		LL sum = 0;
		for (int i = 0; i < nums.size(); i++) {
			sum += nums[i];
			sum_array[i * 3] = sum;
			sum_array[i * 3 + 1] = sum + lower - 1;
			sum_array[i * 3 + 2] = sum + upper;
		}
		sum_array.push_back(upper);
		sum_array.push_back(lower - 1);
		unordered_map<LL, int> index;
		sort(sum_array.begin(), sum_array.end());
		auto end = unique(sum_array.begin(), sum_array.end());
		auto it = sum_array.begin();
		for (int i = 1; it != end;i++,it++) {
			index[*it] = i;
		}
		FenwickTree tree(index.size());
		int ans = 0;
		for (int i = nums.size() - 1; i >= 0; i--) {
			tree.add(index[sum],1);
			sum -= nums[i];
			ans += tree.sum(index[upper + sum]) - tree.sum(index[lower + sum -1]);
		}
		return ans;
	}
};
Python 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46class FenwickTree(object):
    def __init__(self, n):
        self.sum_array = [0] * (n + 1)
        self.n = n
    def lowbit(self, x):
        return x & -x
    def add(self, x, val):
        while x <= self.n:
            self.sum_array[x] += val
            x += self.lowbit(x)
    def sum(self, x):
        res = 0
        while x > 0:
            res += self.sum_array[x]
            x -= self.lowbit(x)
        return res
class Solution(object):
    def countRangeSum(self, nums, lower, upper):
        """
        :type nums: List[int]
        :type lower: int
        :type upper: int
        :rtype: int
        """
        if not nums: return 0
        sum_array = [upper, lower - 1]
        total = 0
        for num in nums:
            total += num
            sum_array += [total, total + lower - 1, total + upper]
        index = {}
        for i, x in enumerate(sorted(set(sum_array))):
            index[x] = i + 1
        tree = FenwickTree(len(index))
        ans = 0
        for i in xrange(len(nums) - 1, -1, -1):
            tree.add(index[total], 1)
            total -= nums[i]
            ans += tree.sum(index[upper + total]) - tree.sum(index[lower + total - 1])
        return ans
本文是 leectode 327 Count of Range Sum 的题解,
更多leetcode题解见 https://www.hrwhisper.me/leetcode-algorithm-solution/
 
        